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1 Why Matroids?

A matroid is a mathematical structure which captures, in a broad sense, the
idea of “independent subsets” of a set. There are two key examples of this
which appear in every talk in matroids (though they are far from the only ones):

Example 1. Let E = {e1, . . . , em} be a finite collection of vectors in some am-
bient vector space V . Then certain subsets of these vectors will be linearly
independent, and other subsets may not. We can look at this as a question
of redundancy: if a subset of the vectors is linearly independent, then we can
represent any other vector in their span as a linear combination of them in a
unique way. On the other hand, if the subset is linearly dependent, then there
are multiple redudant ways to express a vector in its span.

Example 2. Let G be a graph, and let E be the set of its edges. Then we’ll say
that the subset of E is independent if it is a forest: it contains no cycles. (Note
that this is different from being a tree, as the graph need not be connected.)
Again, this is about avoiding redundancy: if a set of edges is independent,
there is at most one way to get from any vertex to any other vertex, while if it
contains a cycle, there can be multiple paths between two vertices.

We’ll look at a few different ways of defining matroids: with each one, keep
these two examples in mind.

2 How Matroids?

One of the characteristic features of matroids is that there are approximately
two bazillion ways to define them—definitions that end up being essentially
equivalent, though it’s nontrivial to see exactly why. (Many mathematicians
say that the definitions are “cryptomorphic”, a word which sounds much cooler
than it actually is.) Let’s start off with this initial idea of independence.
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2.1 Independent Sets

Definition. A matroid consists of a finite1 set E, called the ground set, together
with a collection I of subsets of E, called independent subsets. These satisfy the
following axioms:

1. ∅ ∈ I.

2. Every subset of an independent set is independent.

3. If I1, I2 ∈ I and |I1| < |I2|, then there is some e ∈ I2−I1 such that I1∪{e} ∈ I.

A subset which is not independent is called dependent23.

Let’s verify that Example 1 above satisfies these axioms. The first and sec-
ond properties are essentially immediate. As for the third, suppose I1 and I2
are two sets of linearly independent vectors with |I2| > |I1|. The linear inde-
pendence implies that dim(span(I1)) = |I1|, and likewise for I2. If we could
not add any element of I2 to I1 while keeping it independent, this would im-
ply that every element of I2 was in the span of I1. But then we would have
span(I2) ⊂ span(I1), contradicting dim(span(I2)) > dim(span(I1)).

We say that a matroid obtained from a set of vectors as in Example 1 is a
linear matroid.

Exercise 1. Prove that the edge set of a graph, as presented in Example 2, forms a
matroid. (Or just read on and we’ll do it in at least two other ways.)

2.2 Circuits

If you attempted the previous exercise, you may have seen that working with
independent sets in a set of vectors is easier than working with independent
sets in a graph. If we wanted to define matroids starting from the graph per-
spective rather than the linear algebra perspective, we might focus on what it
means to be a cycle in a graph rather than a subgraph that lacks one. So that
motivates our next definition.

Definition. A matroid consists of a finite set E, called the ground set, together with
a collection C of subsets of E, called circuits. These satisfy the following axioms:

1. ∅ /∈ C.

2. No circuit properly contains another.

3. If C1, C2 are distinct circuits and e ∈ C1 ∩ C2, then there is a circuit C3 such
that C3 ⊂ (C1 ∪ C2)− {e}.

1Although there may not appear to be anything about these definitions that requires finiteness,
the proper definition of infinite matroids is a point of contention. As we’ll see, there are many
different ways of defining matroids, and if you start allowing infinite sets these don’t hang together
as well.

2Or nonindependent.
3Or unantinonindependent.
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Let’s verify that Example 2 above satisfies these axioms. The first is cer-
tainly true, and the second is true because any proper subgraph of a cycle is
just a path (or union of paths). The third is best seen with a picture:

Note that when we remove one of the edges in which the two cycles shown
overlap, we can find a cycle in the graph that remains, essentially by starting
around one cycle and switching to the other one when we encounter the re-
moved edge.

We say that a matroid obtained from a graph as in Example 2 is a graphic
matroid.

What is the relationship between these two definitions? In a graph, a set of
edges is dependent precisely when it contains a circuit. So in general, we can
say that an independent set should be a subset containing no circuit; while a
circuit should be a minimal dependent set. And in fact, under this dictionary,
the two definitions we gave are equivalent.

Theorem 1. 1. The minimal dependent sets of a matroid satisfy the circuit axioms.

2. The subsets of a matroid containing no circuit satisfy the independent set axioms.

Proof. Exercise.

2.3 Bases

In a vector space, we like independent sets in general, but the best ones are
bases. In a (connected) graph, general forests are okay, but we’re often really
interested in spanning trees. What both of these have in common is that they
are maximal independent sets. In both of them, the idea of no redundancy that
motivates independent sets is complemented by an idea of spanning: with a
basis in a set of vectors, we can generate all of the other vectors, and with a
spanning tree of a graph, we can reach every vertex.

Proposition 1. All bases of a matroid have the same size.

Proof. Suppose instead that B1 and B2 are bases such that |B1| < |B2|. Then
we can add an element from B2 to B1 and make a larger independent set,
contradicting its maximality.
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We say that the size of any basis is the rank of the matroid. For a collection
of vectors, this is the dimension of their span. For a connected graph, this is
one less than the number of vertices.

In any other subject, we might be happy just with defining bases in terms
of independent sets. This being matroid theory, we have to turn it into a defi-
nition.

Definition. A matroid is a finite set E, called the ground set, together with a col-
lection B of subsets of E, called bases. These satisfy the following axioms:

1. B is nonempty.

2. If B1, B2 ∈ B, and x ∈ B1 − B2, then there exists y ∈ B2 − B1 such that
(B1 − {x}) ∪ {y} is in B.

Exercise 2. 1. Prove that the maximal independent sets of a matroid according to
our first definition satisfy the basis axioms.

2. Prove that the subsets of the bases of a matroid according to our most recent
definition satisfy the independence axioms.

2.4 Other Things

There are many other angles from which we can look at matroids, each of
which lends itself to a definition (although we won’t go into detail here)

• Just as we defined rank of a matroid above, we can define the rank of
any subset of a matroid to be the size of the largest independent subset
contained in it. This is analogous to taking the dimension of the span of a
collection of vectors. We can define matroids in terms of axioms satisfied
by the rank function.

• We just looked at the dimension of the span of a set of vectors, but how
do we capture the notion of span itself? The idea is to define the closure
of a subset A to be the collection of all e ∈ E such that rank(A ∪ {e}) =
rank(A). That is, we are adding all the elements which are dependent
with everything in A: in the context of a colleciton of vectors, the closure
of a subset consists of all the vectors from our set which lie in the span
of our subset. We can define matroids in terms of axioms satisfied by the
closure operator.

• The closure operator tells us how to get from a set of elements to their
span, but we might be more interested in the particular sets that result
from the span—so we define a flat of a matroid to be a subset F which is
equal to its own closure. In the linear setting, this corresponds to taking
the subset of vectors which are contained in a particular subspace. The
flats form a poset (in fact, a lattice) under containment, and we can define
matroids in terms of axioms satisfied by the lattice of flats.
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The value of having these different definitions is that if we spot any one of
these different structures in the wild, and we see that it satisfies the appropriate
set of axioms, we then know that the rest of the matroid package comes with.

Exercise 3. Choose any two of independent sets, circuits, bases, rank function, closure
operator, and flats. Describe how we define each one in terms of the other.

3 Representability

We haven’t really looked at examples beyond linear and graphic matroids.
And this is an even less diverse collection of examples than it seems, because
graphic matroids are actually linear.

Given a graphGwith vertices indexed 1, . . . , n, we construct a set of vectors
ve ∈ Rn associated to its edges as follows. For each edge, choose an orientation
(it doesn’t particularly matter which). Then to the edge which goes from i to j,
associate the vector which is −1 in the ith component, 1 in the jth component,
and 0 in all others.

Exercise 4. Show that the vectors ve1 , . . . , ven are linearly independent if and only if
the subgraph formed by e1, . . . , en does not contain a cycle.

Here are some other examples of matroids which are not-very-secretly lin-
ear matroids:

• A hyperplane arrangement. Given a collection of n− 1-dimensional sub-
spaces (hyperplanes) in some n-dimensional vector space, we can say
that a subset of k of them is dependent if their intersection has dimen-
sion greater than n − k (so that some of the hyperplanes impose redun-
dant conditions). But if we represent each hyperplane by its defining
equation, and define vectors using the coefficients of these equations, we
get an equivalent linear matroid.

• A collection of points in space. Say that some subset of the points is
dependent if they all lie in a lower-dimensional subspace than expected
(for example, 3 or more points in the plane being collinear). If we look
at this from the point of view of projective geometry, where points are
represented by 1-dimensional subspaces of a space one dimension higher,
the vectors spanning those subspaces form an equivalent linear matroid.

Is matroid theory just linear algebra in disguise? Not at all! The diagram
below depicts the non-Pappus matroid: its ground set consists of the 9 high-
lighted points, and a set is dependent if it has at least 4 elements or consists of
the 3 points on one of the lines shown.
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Why can’t this be realized as a linear matroid? Because of the classical the-
orem of projective geometry known as Pappus’ theorem, which says that if 6
points are arranged in the fashion shown on the top and bottom lines in the
above figure, and 3 more points are obtained as the intersections in the middle
of the figure, then those 3 points must also lie on a line. Roughly, if we attempt
to realize the non-Pappus matroid over a field, it will force the middle 3 points
to be a dependent set as well.

Exercise 5. Verify that the non-Pappus matroid is, in fact, a matroid.

The situation gets even subtler than this. Consider the uniform matroid
U2,4, on the ground set {1, 2, 3, 4}, in which the independent sets are precisely
those with 2 or fewer elements. Then this matroid has rank 2, so if we represent
it as a linear matroid, it can be realized as a set of 4 vectors in a 2-dimensional
space. Since any two of the vectors are independent, we know the 4 vectors
must be distinct and nonzero.

This is perfectly doable—unless we’re working over the field F2, where a
two-dimensional vector space has only 3 distinct nonzero elements! So the
field our vector spaces are defined over actually affects which matroids can be
realized as linear. In general, we say that a matroid is representable over a
field K if it can be realized by a set of vectors over that field. The question of
which fields matroids are representable over is actually quite complicated and
the subject of active research.

This then raises the question: if matroid theory isn’t just linear algebra in
disguise, why did we adopt a system of axioms that allows things like the non-
Pappus matroid to slip through in the first place4? As we’ll see in the next
section, the definition we chose has an important and practical characterizing
property.

4One answer to this questions is “actually coming up with a system of axioms that screens out
non-representable matroids would be extremely complicated and maybe also impossible”. Vámos
wrote an article on this issue with the lovely title of “The Missing Axiom of Matroid Theory Is Lost
Forever”
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4 Greedy Algorithms Are, For Lack of a Better Word,
Good

Here is a problem that arises naturally in contexts involving graphs. Assign
to every edge e of your graph a real number w(e), its weight. Then for any
spanning tree, we define its weight to be the sum of the weights of its edges.
The problem is to find a spanning tree of minimal weight. If we interpret the
weight of an edge as a cost, this is essentially asking: how can we bind the
whole graph together as efficiently as possible?

In matroid language, the problem becomes: if we assign a weight w(e) to
each element e of the ground set, how can we find a basis of minimal total
weight? The most straightforward approach is to use a greedy algorithm: at
each step, look at all the elements we can add to our basis-in-progress without
making it dependent, and pick the one with the smallest weight.

It’s not at all obvious that this should work—adding elements to our basis
prevents other elements from being added later, and we could hypothetically
miss out on a more optimal combination of elements this way. But despite not
planning ahead at all to correct this, the algorithm does work!

Theorem 2. The greedy algorithm produces a basis of minimal weight.

Proof. Let e1, . . . , er be the sequence of elements produced by the greedy algo-
rithm, in the order they appear. Note that w(e1) ≤ w(e2) ≤ · · · ≤ w(er).

Now let f1, . . . , fr be another basis, ordered such that w(f1) ≤ w(f2) ≤
· · · ≤ w(er). We claim that w(ei) ≤ w(fi) for all 1 ≤ i ≤ r, which will certainly
imply that the total weight of the ei basis is less than or equal to that of the fi
basis.

To see this, suppose the contrary, and let j be the smallest index at which
w(fj) < w(ej). Then I1 = {e1, . . . , ej−1} and I2 = {f1, . . . , fj−1, fj} are inde-
pendent sets, with |I2| > |I1|. Thus there exists some k, 1 ≤ k ≤ j such that
{e1, . . . , ej−1, fk} is independent. On the other hand, w(fk) ≤ w(fj) < w(ej),
so our greedy algorithm shouldn’t have chosen ej to add to {e1, . . . , ej−1}.
Rather, fk was a better choice, a contradiction.

One (much better-known) consequence of this result is that we can pro-
duce minimal spanning trees this way. In that context, the greedy algorithm is
known as Kruskal’s algorithm.

But we can consider this greedy algorithm outside of just the context of a
matroid. Suppose E is a set and I is any collection of subsets such that any
subset5 of a member of I is also in I, and suppose that every element e ∈ E
has a weight w(e). Then we could again apply the greedy algorithm: build up
a subset B by starting with the empty set and repeatedly adding the edge of
smallest weight which keeps our subset in I, until we can’t anymore. By our

5We could even drop this condition, but at that point using the greedy algorithm is kind of silly,
since there may be independent subsets that can’t be built up as a sequence of smaller sets at all.
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stopping condition,B is a maximal element of I; but is it the smallest-weighted
such element?

In fact, the answer is “precisely when (E, I) is a matroid”. So what we have
here is yet another definition of matroids!

Theorem 3. Let E be a set and I a collection of subsets. Suppose that

1. ∅ ∈ I

2. Any subset of a set in I is also in I.

3. The greedy algorithm produces a maximal member of I of minimal weight.

Then (E, I) is a matroid.

Proof. Suppose not. Then we can choose sets I1, I2 ∈ I such that |I2| > |I1|, but
for every e ∈ I2 − I1, I1 ∪ {e} is dependent. Now for some 0 < ε < 1, weight
the elements as follows:

w(e) =


−1 e ∈ I1
−1 + ε e ∈ I2 − I1
0 otherwise

In this case, the greedy algorithm will start by picking all the elements of I1;
then, since it can’t add any elements of I2 − I1 by assumption, it will fill this
out to a maximal member of I by adding elements of weight 0. The resulting
maximal member B ∈ I has weight −|I1|.

On the other hand, we can add more elements to I2 and fill it out to a max-
imal subset B2 ∈ I. Since our weights are negative, w(B2) < w(I2), and

w(I2) = w(I1 ∩ I2) + w(I2 − I1)
= −|I1 ∩ I2| − |I2 − I1|+ ε|I2 − I1| = −|I2|+ ε|I2 − I1|

By choosing ε sufficiently small, we can make this less than −|I1|. This shows
that the maximal member of I we got through the greedy algorithm was not
optimal.

In a way, this gives us another reason that the definition of matroid, and the
particular aspects of independence we chose to prioritize in it, really are worth
considering: they isolate a particular property that makes a greedy algorithm
work.

References

[1] Oxley, James. Matroid Theory, 2nd ed. Oxford University Press, 2011.

8


